Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton's Jelly Mesenchymal Stem Cells

نویسندگان

  • Kewalin Inthanon
  • Donraporn Daranarong
  • Pimwalan Techaikool
  • Winita Punyodom
  • Vorathep Khaniyao
  • Audrey M Bernstein
  • Weerah Wongkham
چکیده

Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35-40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N-H, and C-N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton's jelly of umbilical cord on PBMCs

Objective(s):Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of human MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton's jelly (WJ) of human umbilical cord. The current study has compared immu...

متن کامل

Evaluation of the effect of an intradermal injection of Wharton\'s jelly-derived mesenchymal stem cells in diabetic wound healing in animal model

Background: The application of mesenchymal stem cells in the healing of chronic wounds is one of the most challenging issues in cell therapy. The present study investigated the efficacy of intradermal injection of umbilical cord Wharton's Jelly-derived mesenchymal stem cells in diabetic wound healing using ultrasound imaging in an animal model. Methods: During this experimental laboratory stud...

متن کامل

ارزیابی نشانگرهای سطحی و ژن‌های وابسته به آن‌ها در سلول‌های بنیادی مزانشیمی ژله وارتون بند ناف انسانی

Background and purpose: Umbilical cord derived Wharton's jelly is an enriched and accessible ‎source of stem cells with highly proliferative and differentiation potential. This study aimed to evaluate the ‎surface markers and related genes of the stem cells isolated from the human Wharton's jelly.‎ Materials and methods: Explants of the human umbilical cord derived Wharton's jelly was dissecte...

متن کامل

Wharton's jelly mesenchymal stem cells differentiate into retinal progenitor cells

Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serum-free neural stem cell-conditioned medium or neural stem cell-conditioned medium supplemented with Dkk-1, a Wnt/β catenin pathway antagonist, and LeftyA, a Nodal signaling pathway antagonist to induce differentiation into retinal progenitor cells. Inverted microscopy showed that aft...

متن کامل

Assess The Pluripotency of Caprine Umbilical Cord Wharton’s Jelly Mesenchymal Cells By RT-PCR Analysis of Early Transcription Factor Nanog

Objective-  In the present study we investigated the isolation protocol, population doubling time (PDT) and the expression of a pluripotential gene by RT-PCR analysis of early transcription factor Nanog in caprine umbilical cord (CUC) Wharton's jelly mesenchymal cells (WJMCs). Design- Experimental in vitro study.   Animals- Four mix breed goat.   Procedures- CUCs were collected from abattoi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016